
COP 4710: Data Modeling (Chapter 2) Page 1 © Dr. Mark Llewellyn

COP 4710: Database Systems

Fall 2011

Chapter 2 – Introduction to Data Modeling

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2011

COP 4710: Data Modeling (Chapter 2) Page 2 © Dr. Mark Llewellyn

• Semantic data models attempt to capture the “meaning” of
a database. Practically, they provide an approach for
conceptual data modeling.

• Over the years there have been several different semantic
data models that have been proposed.

• By far the most common is the entity-relationship data
model, most often referred to as simply the E-R data
model.

• The E-R model is often used as a form of communication
between database designers and the end users during the
developmental stages of a database.

Introduction to Data Modeling

COP 4710: Data Modeling (Chapter 2) Page 3 © Dr. Mark Llewellyn

• The E-R model contains an extensive set of modeling

tools, some of which we will not be concerned with as our

primary objective is to give you some insight into

conceptual database design and not learning all of the ins

and outs of the E-R model.

• Another conceptual modeling which is becoming more

common is the Object Definition Language (ODL) which

is an object-oriented approach to database design that is

emerging as a standard for object-oriented database

systems.

Introduction to Data Modeling (cont.)

COP 4710: Data Modeling (Chapter 2) Page 4 © Dr. Mark Llewellyn

• The database design process can be divided into six basic
steps. Semantic data models are most relevant to only the
first three of these steps.

1. Requirements Analysis: The first step in designing a
database application is to understand what data is to be
stored in the database, what applications must be built on
top of it, and what operations are most frequent and subject
to performance requirements. Often this is an informal
process involving discussions with user groups and
studying the current environment. Examining existing
applications expected to be replaced or complemented by
the database system.

Database Design

COP 4710: Data Modeling (Chapter 2) Page 5 © Dr. Mark Llewellyn

2. Conceptual Database Design: The information gathered in

the requirements analysis step is used to develop a high-

level description of the data to be stored in the database,

along with the constraints that are known to hold on this

data.

3. Logical Database Design: A DBMS must be selected to

implement the database and to convert the conceptual

database design into a database schema within the data

model of the chosen DBMS.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2) Page 6 © Dr. Mark Llewellyn

4. Schema Refinement: In this step the schemas developed in
step 3 above are analyzed for potential problems. It is in
this step that the database is normalized. Normalization of
a database is based upon some elegant and powerful
mathematical theory. We will discuss normalization later
in the term.

5. Physical Database Design: At this stage in the design of a
database, potential workloads and access patterns are
simulated to identify potential weaknesses in the
conceptual database. This will often cause the creation of
additional indices and/or clustering relations. In critical
situations, the entire conceptual model will need
restructuring.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2) Page 7 © Dr. Mark Llewellyn

6. Security Design: Different user groups are identified and

their different roles are analyzed so that access patterns to

the data can be defined.

• There is often a seventh step in this process with the last

step being a tuning phase, during which the database is

made operational (although it may be through a

simulation) and further refinements are made as the system

is “tweaked” to provide the expected environment.

• The illustration on the following page summarizes the

main phases of database design.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2) Page 8 © Dr. Mark Llewellyn

Database Design (cont.)

Miniworld

Requirements Collection and Analysis

Conceptual Design

Logical Design – (data model mapping)

Physical Design

Database Requirements

Conceptual Schema (high-level data model)

Logical Schema (data model of specific DBMS)

Internal Schema

Functional Requirements

Functional Analysis

High-level Transaction Specification

Application Program Design

Transaction Implementation

Application Programs

D
B

M
S

-i
n
d

e
p

e
n
d
e
n

t
D

B
M

S
-s

p
e

c
if
ic

COP 4710: Data Modeling (Chapter 2) Page 9 © Dr. Mark Llewellyn

• The E-R model employs three basic notions: entity sets,
relationship sets, and attributes.

• An entity is a “thing” or “object” in the real world that is
distinguishable from all other objects. An entity may be
either concrete, such as a person or a book, or it may be
abstract, such as a bank loan, or a holiday, or a concept.

• An entity is represented by a set of attributes. Attributes
are descriptive properties or characteristics possessed by
an entity.

• An entity set is a set of entities of the same type that share
the same attributes. For example, the set of all persons
who are customers at a particular bank can be defined as
the entity set customers.

The Entity-Relationship Model

COP 4710: Data Modeling (Chapter 2) Page 10 © Dr. Mark Llewellyn

• Entity sets do not need to be disjoint. For example, we
could define the entity set of all persons who work for a
bank (employee) and the entity set of all persons who are
customers of the bank (customers). A given person entity
might be an employee, a customer, both, or neither.

• For each attribute, there is a permitted set of values, called
the domain (sometimes called the value set), of that
attribute. More formally, an attribute of an entity set is a
function that maps from the entity set into a domain. Since
an entity set may have several attributes, each entity in the
set can be described by a set of <attribute, data-value>
pairs, one for each attribute of the entity set.

• A database contains a collection of entity sets.

The Entity-Relationship Model (cont.)

COP 4710: Data Modeling (Chapter 2) Page 11 © Dr. Mark Llewellyn

Relationship

degrees specify

number of

entity types

involved
Relationship

cardinalities

specify how

many of each

entity type is

allowed

Entity

symbols
Attribute

symbols

Basic ERD Notation

COP 4710: Data Modeling (Chapter 2) Page 12 © Dr. Mark Llewellyn

Sample E-R Diagram (Figure 3-1)

Legend

COP 4710: Data Modeling (Chapter 2) Page 13 © Dr. Mark Llewellyn

What Should an Entity Be?

• SHOULD BE:

– An object that will have many instances in the

database

– An object that will be composed of multiple

attributes

– An object that we are trying to model

• SHOULD NOT BE:

– A user of the database system

– An output of the database system (e.g. a report)

COP 4710: Data Modeling (Chapter 2) Page 14 © Dr. Mark Llewellyn

System

user

System

output

Inappropriate Entities

Only necessary entities

COP 4710: Data Modeling (Chapter 2) Page 15 © Dr. Mark Llewellyn

Attributes

• Attribute - property or characteristic of an entity type

• Classifications of attributes:

– Required versus Optional Attributes

– Simple versus Composite Attribute

– Single-Valued versus Multivalued Attribute

– Stored versus Derived Attributes

– Identifier Attributes

COP 4710: Data Modeling (Chapter 2) Page 16 © Dr. Mark Llewellyn

Identifiers (Keys)

• Identifier (Key) - An attribute (or combination of

attributes) that uniquely identifies individual

instances of an entity type.

• Simple Key versus Composite Key.

• Candidate Key – an attribute that could be a

key…satisfies the requirements for being a key.

COP 4710: Data Modeling (Chapter 2) Page 17 © Dr. Mark Llewellyn

Characteristics of Identifiers

• Will not change in value.

• Will not be null.

• No intelligent identifiers (e.g. containing locations or

people that might change).

• Substitute new, simple keys for long, composite keys.

COP 4710: Data Modeling (Chapter 2) Page 18 © Dr. Mark Llewellyn

Strong vs. Weak Entities, and

Identifying Relationships

• Strong entities

– exist independently of other types of entities

– has its own unique identifier

• Weak entity

– dependent on a strong entity…cannot exist on its own

– does not have a unique identifier

• Identifying relationship

– links strong entities to weak entities

COP 4710: Data Modeling (Chapter 2) Page 19 © Dr. Mark Llewellyn

Weak vs. Strong Entities

• A weak entity is an entity type whose existence depends
on some other entity type.

• The entity type on which the weak entity is dependent is
called the identifying owner (or simply owner).

• A weak entity does not have its own identifier.

COP 4710: Data Modeling (Chapter 2) Page 20 © Dr. Mark Llewellyn

A Composite Attribute

An attribute

broken into

component parts

COP 4710: Data Modeling (Chapter 2) Page 21 © Dr. Mark Llewellyn

A Multi-valued Attribute And A Derived Attribute

A multi-valued

attribute.

Represented in

curly braces.
A derived

attribute.

Represented in

square braces.

COP 4710: Data Modeling (Chapter 2) Page 22 © Dr. Mark Llewellyn

A Simple Identifier

Attribute And A Composite Identifier Attribute

Simple

identifier

attribute

Composite

identifier attribute

COP 4710: Data Modeling (Chapter 2) Page 23 © Dr. Mark Llewellyn

More on Relationships

• Relationship Types vs. Relationship Instances

– The relationship type is as a line between entity types…the

instance is between specific entity instances

• Relationships can have attributes
– These describe features pertaining to the association between the entities

in the relationship

• Two entities can have more than one type of

relationship between them (multiple relationships)

• Associative Entity – combination of relationship and

entity

COP 4710: Data Modeling (Chapter 2) Page 24 © Dr. Mark Llewellyn

More on Relationships

Relationship type

Relationship

instance

COP 4710: Data Modeling (Chapter 2) Page 25 © Dr. Mark Llewellyn

Degree of Relationships

• Degree of a relationship is the number of entity types

that participate in it:

– Unary Relationship

– Binary Relationship

– Ternary Relationship

COP 4710: Data Modeling (Chapter 2) Page 26 © Dr. Mark Llewellyn

Cardinality of Relationships

• One-to-One

– Each entity in the relationship will have exactly one related

entity.

• One-to-Many

– An entity on one side of the relationship can have many

related entities, but an entity on the other side will have a

maximum of one related entity.

• Many-to-Many

– Entities on both sides of the relationship can have many

related entities on the other side.

COP 4710: Data Modeling (Chapter 2) Page 27 © Dr. Mark Llewellyn

Mapping Cardinality: 1:1 from A to B

a1

a2

a3

a4

b1

b2

b3

b4

A B

COP 4710: Data Modeling (Chapter 2) Page 28 © Dr. Mark Llewellyn

·

Mapping Cardinality: 1:M from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Data Modeling (Chapter 2) Page 29 © Dr. Mark Llewellyn

·

Mapping Cardinality: M:1 from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

a5

COP 4710: Data Modeling (Chapter 2) Page 30 © Dr. Mark Llewellyn

·

Mapping Cardinality: M:M from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Data Modeling (Chapter 2) Page 31 © Dr. Mark Llewellyn

Cardinality Constraints

• Cardinality Constraints - the number of instances of one

entity that can or must be associated with each instance

of another entity.

• Minimum Cardinality

– If zero, then optional.

– If one or more, then mandatory.

• Maximum Cardinality

– The maximum number possible.

COP 4710: Data Modeling (Chapter 2) Page 32 © Dr. Mark Llewellyn

Cardinality Constraints

Basic relationship: 1:M from Movie to Videotape (min =1, max = ?)

Relationship with cardinality constraints: mandatory on Movie side, Optional on Videotape side

COP 4710: Data Modeling (Chapter 2) Page 33 © Dr. Mark Llewellyn

Cardinality Constraints

Mandatory cardinalities – Every patient must have at least 1 history. Every history belongs to 1 patient.

Optional cardinalities – An employee may not be assigned to a project.

Every project has at least 1 employee assigned.

COP 4710: Data Modeling (Chapter 2) Page 34 © Dr. Mark Llewellyn

Cardinality Constraints

Optional cardinalities in a unary relationship – Not every person is married, but relationships are 1:1

COP 4710: Data Modeling (Chapter 2) Page 35 © Dr. Mark Llewellyn

Cardinality Constraints

Cardinality constraints in a ternary relationship

COP 4710: Data Modeling (Chapter 2) Page 36 © Dr. Mark Llewellyn

Unary Relationships

COP 4710: Data Modeling (Chapter 2) Page 37 © Dr. Mark Llewellyn

Binary Relationships

COP 4710: Data Modeling (Chapter 2) Page 38 © Dr. Mark Llewellyn

Ternary Relationships

COP 4710: Data Modeling (Chapter 2) Page 39 © Dr. Mark Llewellyn

Associative Entities
• It’s an entity – it has attributes; AND it’s a relationship – it

links entities together.

• When should a relationship with attributes instead be an
associative entity?

– All relationships for the associative entity should be many
to many.

– The associative entity could have meaning independent of
the other entities.

– The associative entity preferably has a unique identifier,
and should also have other attributes.

– The associative entity may participate in other relationships
other than the entities of the associated relationship.

– Ternary relationships should be converted to associative
entities.

COP 4710: Data Modeling (Chapter 2) Page 40 © Dr. Mark Llewellyn

Associative Entities

Relationship has

an attribute

COP 4710: Data Modeling (Chapter 2) Page 41 © Dr. Mark Llewellyn

Associative Entities

An associative entity –

note rounded corners

COP 4710: Data Modeling (Chapter 2) Page 42 © Dr. Mark Llewellyn

Associative Entities

An associative entity –

note rounded corners

COP 4710: Data Modeling (Chapter 2) Page 43 © Dr. Mark Llewellyn

Ternary Relationship to Associative Entity

COP 4710: Data Modeling (Chapter 2) Page 44 © Dr. Mark Llewellyn

Using Relationships and Entities To Link

Related Attributes

Multi-valued attribute as a relationship

COP 4710: Data Modeling (Chapter 2) Page 45 © Dr. Mark Llewellyn

Using Relationships and Entities To Link

Related Attributes

Composite, multi-valued attribute as a relationship

COP 4710: Data Modeling (Chapter 2) Page 46 © Dr. Mark Llewellyn

Using Relationships and Entities To Link

Related Attributes

Composite attribute shared with other entities

COP 4710: Data Modeling (Chapter 2) Page 47 © Dr. Mark Llewellyn

Entities can be related to one another in more than one way

COP 4710: Data Modeling (Chapter 2) Page 48 © Dr. Mark Llewellyn

A more

complex ERD

Different modeling
software tools may have
different notation for the
same constructs

COP 4710: Data Modeling (Chapter 2) Page 49 © Dr. Mark Llewellyn

Supertypes and Subtypes

• Subtype: A subgrouping of the entities in an entity type which

has attributes that are distinct from those in other subgroupings.

• Supertype: An generic entity type that has a relationship with

one or more subtypes.

• Attribute Inheritance:

– Subtype entities inherit values of all attributes of the

supertype.

– An instance of a subtype is also an instance of the supertype.

COP 4710: Data Modeling (Chapter 2) Page 50 © Dr. Mark Llewellyn

COP 4710: Data Modeling (Chapter 2) Page 51 © Dr. Mark Llewellyn

Relationships and Subtypes

• Relationships at the supertype level indicate that

all subtypes will participate in the relationship.

• The instances of a subtype may participate in a

relationship unique to that subtype. In this

situation, the relationship is shown at the subtype

level.

COP 4710: Data Modeling (Chapter 2) Page 52 © Dr. Mark Llewellyn

COP 4710: Data Modeling (Chapter 2) Page 53 © Dr. Mark Llewellyn

When To Use Supertype/Subtype Relationships

• Whether to use supertype/subtype relationships is a

decision the data modeler must make in each situation.

• You should consider using subtypes when either (or

both) of the following conditions are present:

1. There are attributes that apply to some (but not all) instances

of an entity type. See the example on the previous page.

2. The instances of a subtype participate in a relationship that

is unique to the subtype, i.e., other subtypes do not

participate in the relationship.

COP 4710: Data Modeling (Chapter 2) Page 54 © Dr. Mark Llewellyn

When To Use Supertype/Subtype Relationships

• As an example of when to use subtypes, consider the following
scenario.

Each

subtype

has an

attribute

unique to

that

subtype

Only the subtype RESIDENT

PATIENT participates in the

relationship that assigns them

a bed.

Both outpatients and resident

patients are cared for by a

responsible physician.

COP 4710: Data Modeling (Chapter 2) Page 55 © Dr. Mark Llewellyn

Generalization and Specialization

• Generalization: The process of defining a

more general entity type from a set of more

specialized entity types.

– This is a BOTTOM-UP approach to design.

• Specialization: The process of defining one

or more subtypes of the supertype, and forming

supertype/subtype relationships.

– This is a TOP-DOWN approach to design.

COP 4710: Data Modeling (Chapter 2) Page 56 © Dr. Mark Llewellyn

Generalization

• The data modeler has identified three entity types.

• Notice the similarities and differences amongst these types.

COP 4710: Data Modeling (Chapter 2) Page 57 © Dr. Mark Llewellyn

Generalization

Question: What happened to the

motorcycle entity type?

Answer: Since the class does not satisfy

the conditions for developing a subtype.

The type has no unique attributes and

does not participate in any unique

relationships. Therefore, motorcycles

are simply vehicles without any

specialization.

COP 4710: Data Modeling (Chapter 2) Page 58 © Dr. Mark Llewellyn

Specialization

• The data modeler has identified an entity type that contains a multi-

valued attribute. Some of the attributes apply to all parts regardless of the

source, while some of the attributes depend on the source.

A multi-valued composite

attribute

Some parts are purchased and some

are manufactured. Some attributes

apply only to purchased parts, some

apply only to manufactured parts, and

some apply to both types of parts.

COP 4710: Data Modeling (Chapter 2) Page 59 © Dr. Mark Llewellyn

Specialization

These attributes

apply to all parts.

Only purchased

parts participate in

this relationship.

An

associative

entity

COP 4710: Data Modeling (Chapter 2) Page 60 © Dr. Mark Llewellyn

Constraints in Supertype/Subtype Relationships

Completeness Constraints

• A completeness constraint specifies whether an instance

of a supertype must also be a member of at least one

subtype. There are two possible cases:

– Total Specialization Rule

• All instances in the supertype must also be a member of at

least one subtype. Represented by a double line from the

supertype to the subclass split (see next page).

– Partial Specialization Rule

• Some instances in the supertype may not be members of

any subtype. Represented by a single line (see next page).

COP 4710: Data Modeling (Chapter 2) Page 61 © Dr. Mark Llewellyn

Constraints in Supertype/Subtype Relationships
Completeness Constraints

Total specialization

A patient must either be an

outpatient or a resident patient.

Partial specialization

A vehicle may be either a car

or a truck or neither.

COP 4710: Data Modeling (Chapter 2) Page 62 © Dr. Mark Llewellyn

Constraints in Supertype/Subtype Relationships

Disjointness Constraints

• Whether an instance of a supertype may

simultaneously be a member of two (or more)

subtypes. Again, two rules apply:

– Disjoint Rule

• An instance of the supertype can be only ONE of the

subtypes. The letter “D” is placed in the category circle.

– Overlap Rule

• An instance of the supertype could be more than one of the

subtypes. The letter “O” is placed in the category circle.

COP 4710: Data Modeling (Chapter 2) Page 63 © Dr. Mark Llewellyn

Constraints in Supertype/Subtype Relationships
Disjointness Constraints

Disjoint constraint – Patient is either an

outpatient or a resident patient, but not

both.

COP 4710: Data Modeling (Chapter 2) Page 64 © Dr. Mark Llewellyn

Constraints in Supertype/Subtype Relationships
Disjointness Constraints

Overlapping constraint –

a part could be both a

manufactured and

purchased part.

COP 4710: Data Modeling (Chapter 2) Page 65 © Dr. Mark Llewellyn

Defining Subtype Discriminators

Subtype Discriminator

• An attribute of the supertype whose values determine

the target subtype(s):

– Disjoint – a simple attribute with alternative values to

indicate the possible subtypes.

– Overlapping – a composite attribute whose subparts pertain

to different subtypes. Each subpart contains a boolean

value to indicate whether or not the instance belongs to the

associated subtype.

COP 4710: Data Modeling (Chapter 2) Page 66 © Dr. Mark Llewellyn

Defining Subtype Discriminators

Disjoint

A simple attribute

COP 4710: Data Modeling (Chapter 2) Page 67 © Dr. Mark Llewellyn

Defining Subtype Discriminators

Overlapping

A composite

attribute

COP 4710: Data Modeling (Chapter 2) Page 68 © Dr. Mark Llewellyn

Supertype/Subtype Hierarchies

COP 4710: Data Modeling (Chapter 2) Page 69 © Dr. Mark Llewellyn

Entity Clusters

• EER diagrams are difficult to read when there are too

many entities and relationships.

• Solution: group entities and relationships into entity

clusters.

• Entity cluster: set of one or more entity types and

associated relationships grouped into a single abstract

entity type.

COP 4710: Data Modeling (Chapter 2) Page 70 © Dr. Mark Llewellyn

Entity Clusters

COP 4710: Data Modeling (Chapter 2) Page 71 © Dr. Mark Llewellyn

Entity Clusters

COP 4710: Data Modeling (Chapter 2) Page 72 © Dr. Mark Llewellyn

• Null: An attribute takes a null value when an entity does

not have a value for it. Null values are usually special

cases that can be handled in a number of different ways

depending on the situation.

– For example, it could be interpreted to mean that the attribute is

“not applicable” to this entity, or it could mean that the entity has a

value for this attribute but we don’t know what it is. We will see

later in the term how different systems handle null values and the

different interpretations that may be associated with this special

value.

Attributes in the E-R Model

COP 4710: Data Modeling (Chapter 2) Page 73 © Dr. Mark Llewellyn

• A relationship is an association among several
entities.
– For example, we can define a relationship that associates you

as a student in COP 4710. This relationship might specify

that you are enrolled in this course.

Relationships in the E-R Model

A relationship set is a set of relationships of the same type.

More formally, it is a mathematical relation on n  2 (possibly non distinct) entity sets.

If E1, E2, …, En are entity sets, then a relationship set R is a subset of:

where is the relationship.

  nn2211n21 Ee,,Ee,Eee,,e,e  

 n21 e,,e,e 

COP 4710: Data Modeling (Chapter 2) Page 74 © Dr. Mark Llewellyn

• The association between entity sets is referred to as
participation; that is, the entity sets E1, E2, …, En

participate in relationship R.

• A relationship instance in an E-R schema represents an
association between named entities in the real world
enterprise which is being modeled.

• A relationship may also have attributes which are called
descriptive attributes. For example, considering the bank
scenario again, suppose that we have a relationship set
depositor with entity sets customer and account. We
might want to associate with the depositor relationship set
a descriptive attribute called access-date to indicate the
most recent date that a customer accessed their account.

•

Relationships in the E-R Model (cont.)

COP 4710: Data Modeling (Chapter 2) Page 75 © Dr. Mark Llewellyn

• We must have some mechanism for specifying how
entities within a given entity set are distinguished.

• Conceptually, individual entities are distinct; from a
database perspective, however, the differences among
them must be expressed in terms of their attributes.
Therefore, the values of the attribute values of an entity
must be such that they can uniquely identify the entity. In
other words, no two entities in an entity set are allowed to
have exactly the same value for all attributes.

• A key allows us to identify a set of attributes that suffice to
distinguish entities from each other. Keys also help
uniquely identify relationships, and thus distinguish
relationships from one another.

Keys of an Entity Set

COP 4710: Data Modeling (Chapter 2) Page 76 © Dr. Mark Llewellyn

• A superkey is a set of one or more attributes that, taken
collectively, allow us to identify uniquely an entity in the
entity set. Suppose that we have an entity set modeling the
students in COP 4710. Suppose that we have the
following schema for this entity set:

Students(SS#, name, address, age, major, minor, gpa, spring-sch)

• Among the attributes which we have associated with each
student must be a set of attributes which will uniquely
distinguish each student. Suppose that we define this set
of attributes to be:

(SS#, name, major, minor)

Primary Keys, SuperKeys and Candidate Keys

COP 4710: Data Modeling (Chapter 2) Page 77 © Dr. Mark Llewellyn

• This set of attributes (SS#, name, major, minor)

defines a superkey for the entity set Students.

Notice that the set of attributes (SS#, name) also

defines a superkey for this entity set, because

given this second set of attributes we can still

uniquely distinguish each student in the set. The

concept of a superkey is not a sufficient definition

of a key because the superkey, as we can see from

this example, may contain extraneous attributes.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Data Modeling (Chapter 2) Page 78 © Dr. Mark Llewellyn

• If the set K is a superkey of entity set E, then so too is any
superset of K. We are interested only in superkeys for
which no proper subset of K is a superkey. Such a
minimal superkey is called a candidate key.

• For a given entity set E it is possible that there may be
several distinct sets of attributes which are candidate keys.

• Either there is only a single such set of attributes or there
are several distinct sets from which only one is selected by
the database designer and this set of attributes defines the
primary key which is typically referred to simply as the key
of the entity set.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Data Modeling (Chapter 2) Page 79 © Dr. Mark Llewellyn

• A key (primary, candidate, and super) is a property of the
entity set, rather than of the individual entities. Any two
individual entities in the set are prohibited from having the
same value on all attributes which comprise the key
attributes at the same time. This constraint on the allowed
values of an entity within the set is a key constraint.

• The database designer must use care in the selection of the
set of attributes which comprise the key of an entity set to:
(1) be certain that the set of attributes guarantees the
uniqueness property, and (2) be certain that the set of key
attributes are never, or very rarely, changed.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Data Modeling (Chapter 2) Page 80 © Dr. Mark Llewellyn

• The primary key of an entity set allows us to distinguish
among the various entities in the set. There must be a
similar mechanism which allows us to distinguish among
the various relationships in a relationship set.

• Let R be a relationship set involving entity sets E1, E2, …,
En. Let Ki denote the set of attributes which comprise the
primary key of entity set Ei. For now lets assume that

– (1) all attributes names in all primary keys are unique, it will make
the notation easier to understand and it really isn’t a problem if the
names aren’t unique anyway, and

– (2) each entity set participates only once in the relationship.

• Then the composition of the primary key for the relationship set
depends on the set of attributes associated with the relationship

set R in the following ways:

Relationship Sets

COP 4710: Data Modeling (Chapter 2) Page 81 © Dr. Mark Llewellyn

• (a) If the relationship set R has no attributes associated

with it, then the set of attributes: K1  K2    Kn

describes an individual relationship in set R.

• (b) If the relationship set R has attributes a1, a2, …, am

associated with it, then the set of attributes: K1  K2  

 Kn  { a1, a2, …, am } describes an individual

relationship in set R.

• In both of these cases, the set of attributes: K1  K2  

 Kn forms a superkey for the relationship set.

Relationship Sets (cont.)

COP 4710: Data Modeling (Chapter 2) Page 82 © Dr. Mark Llewellyn

• The structure of the primary key for the relationship set depends
upon the mapping cardinality of the relationship set. Consider
the following case:

• This E-R diagram represents a many to many cardinality for the
relationship deposits with an attribute of access date associated
with the relationship set with two entities customer and account
participating in the relationship. The primary key of the
relationship deposits will consist of the union of the primary
keys of customer and account.

Effect of Cardinality Constraints on Keys

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 83 © Dr. Mark Llewellyn

• To further clarify this situation consider for a moment the
schemas of these two entity sets:

Customer (customer-id, customer-name, address, city)

Account (account-number, balance)

• A many-to-many relationship between these two sets
means that it is possible for one customer to have several
accounts and similarly for a given account to be held by
several customers.

• To uniquely identify a relationship between two entities in
customers and accounts will require the union of the
primary keys in both entity sets.

Effect of Cardinality Constraints on Keys

COP 4710: Data Modeling (Chapter 2) Page 84 © Dr. Mark Llewellyn

• In order to “see” the last deposit made to specific

account number requires that we specify by whom

the deposit was made since several account

holders may have made deposits to the same

account.

• The schema for the deposits relationship is then:

Deposits (customer-id, account-number, access-date)

Effect of Cardinality Constraints on Keys (cont.)

COP 4710: Data Modeling (Chapter 2) Page 85 © Dr. Mark Llewellyn

• Now consider the case when a customer is only allowed to have
one account. This means that the deposits relationship is many-
to-one from customer to account as shown in the following
diagram.

• In this case the primary key of the deposits relationship is simply
the primary key of the customer entity set. To clarify this, again
look at the schemas of the entity sets:

Customer (customer-id, customer-name, address, city)

Account (account-number, balance)

Effect of Cardinality Constraints on Keys (cont.)

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 86 © Dr. Mark Llewellyn

• As a many-to-one relationship means that a given customer

can have only a single account then the primary key of the

deposits relationship is simply the primary key of the

customer set since for a given customer they could only

make a single most recent deposit since they only “own”

one account, so specifying the account number is not

necessary to identify a unique deposit by a given customer.

• The schema for the deposits relationship set is then:

Deposits (customer-id, access-date)

Effect of Cardinality Constraints on Keys (cont.)

COP 4710: Data Modeling (Chapter 2) Page 87 © Dr. Mark Llewellyn

• Now consider the case when the depositor relationship is many-to-one from
account to customer.

• A many-to-one relationship from account to customer means that each account is
owned by at most one customer but each customer may have more than one
account. In this situation the primary key of the deposits relationship is simply
the primary key of the account entity set since there can be at most one most
recent deposit to a given account because at most one customer could make the
deposit. We do not need to uniquely identify which customer made the deposit
in question because there could only be one.

• The schema for the deposits relationship is then:

Deposits (account-id, access-date)

Effect of Cardinality Constraints on Keys (cont.)

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 88 © Dr. Mark Llewellyn

• Just as the cardinality of a relationship set affects the set of
attributes which comprise the primary key of the
relationship set, so too does it affect the placement of the
attributes.

• The attributes of a one-to-one or one-to-many relationship
set can be associated with one of the participating entity
sets, rather than with the relationship set itself. For
example consider the following case:

Placement of Relationship Attributes

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 89 © Dr. Mark Llewellyn

• The attribute access-date could be associated with the
account set without loss of information. Since a given
account can be owned by at most one customer it could
have at most one access-date which could be stored in the
account

Placement of Relationship Attributes (cont.)

Customer

Account

access date

COP 4710: Data Modeling (Chapter 2) Page 90 © Dr. Mark Llewellyn

Now consider the following case:

• The attribute access-date could be associated with either the customer
set or the account set without loss of information. In this case a given
account can be owned by at most one customer and a given customer
can own at most one account. Therefore, if the access-date attribute is
stored with the customer set then it must refer to the last access by this
customer on the only account they can have. Similarly, if the access-
date attribute is stored with the account set, then it must refer to the
last access on this account by the only customer who owns this

account.

Placement of Relationship Attributes (cont.)

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 91 © Dr. Mark Llewellyn

• Therefore, either diagram below would be a correct

representation of this situation:

Placement of Relationship Attributes (cont.)

Customer

Account

access date

Customer

access date

Account

COP 4710: Data Modeling (Chapter 2) Page 92 © Dr. Mark Llewellyn

• When the relationship set has a cardinality constraint of many-to-many, the
situation is much clearer. Consider the following situation:

• Since an account may be owned by several customers, we see that associating
the access-date attribute with either entity set will not properly model this
situation without the loss of information. If we need to model the date that a
specific customer last accessed a specific account the access-date attribute
must be an attributed of the depositor relationship set, rather than one of the
participating entities. For example, if access-date were an attribute of account
we could not determine which customer made the last access to the account. If
access-date were an attribute of customer we could not determine which
account the customer last accessed.

Placement of Relationship Attributes (cont.)

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 93 © Dr. Mark Llewellyn

• The notions of an entity set and a relationship set are not
precise.

• It is possible to define a set of entities and the relationships
among them in a number of different ways. We’ll look
briefly at some of these different approaches to the

modeling of the data.

• To some extent this is where the “art” of database design
becomes tricky. Sometimes several different design
scenarios may all look equally plausible and even after
refinement may still be suitable, sometimes not. Only a
careful design will eliminate some of the problems we’ve
discussed earlier.

Further Design Issues

COP 4710: Data Modeling (Chapter 2) Page 94 © Dr. Mark Llewellyn

• Consider the entity set: Employee(emp-name, telephone-number, age)

• It could easily be argued that a telephone is an entity in its
own right with attributes of say, telephone-number, location,
manufacturer, serial-num, and so on. If we take this point of
view, then:

1. The Employee entity set must be redefined as:

Employee (emp-name, age)

2. Must create a new entity set:

Telephone(telephone-number, location, manufacturer, serial-num,…)

3. A relationship set must be created to denote the association between
employees and the telephones that they have.

Emp-Phone(emp-name, telephone-number, age, location, manufacturer,
serial-num)

Entity Sets vs. Attributes

COP 4710: Data Modeling (Chapter 2) Page 95 © Dr. Mark Llewellyn

• Now we must consider what it the main difference between
these two definitions of an employee?

• Treating the telephone as an attribute telephone-number
implies that employees have precisely one telephone number
each. (Note that this must be true or otherwise the telephone-
number attribute would need to be a part of the key for an
employee and it isn’t here – not considering multiple-valued
attributes).

• Treating a telephone as an entity permits employees to have
several phones (including zero) associated with them.
However, we could easily make the telephone-number
attribute be a multi-valued one to allow multiple phones per
employee. So clearly, this is not the main difference in the
two representations.

Entity Sets vs. Attributes (cont.)

COP 4710: Data Modeling (Chapter 2) Page 96 © Dr. Mark Llewellyn

• The main difference then is that treating a telephone as an
entity better models a situation where one might want to keep
additional information about a telephone, as we have
indicated with our example above.

• If we used the original approach and wished to make the
telephone an attribute of an employee and we wished to
maintain this additional information about their phone, then
the Employee entity set would look like:

Employee(emp-name, telephone-number, age, location, manufacturer,…)

• This is clearly not a good schema, for example, is the age
attribute associated with the employee or the telephone? In
this situation we are attempting to model two different entity
sets inside a single entity set.

Entity Sets vs. Attributes (cont.)

COP 4710: Data Modeling (Chapter 2) Page 97 © Dr. Mark Llewellyn

• Conversely, it would not be appropriate to treat the attribute

emp-name as an entity; it is difficult to argue that an

employee name is an entity in its own right (in contrast to

the telephone). Thus, it is entirely appropriate to have emp-

name as an attribute of the Employee entity set.

• So, what constitutes and attribute and what constitutes an

entity?

– Unfortunately, there are no simple answers. The distinctions depend

mainly upon the structure of the real-world scenario which is being

modeled, and on the semantics associated with the attribute in

question.

Entity Sets vs. Attributes (cont.)

COP 4710: Data Modeling (Chapter 2) Page 98 © Dr. Mark Llewellyn

• A common mistake is to use the primary key of an

entity set as an attribute of another entity set, instead

of using a relationship. For example, given our

bank example again, it would not be appropriate to

model customer-id as an attribute of loan even if

each loan had only one customer associated to it.

The relationship borrower is the correct way of

representing the relationship between a loan and a

customer, since it makes their connection explicit

rather than implicit via an attribute.

Entity Sets vs. Attributes (cont.)

COP 4710: Data Modeling (Chapter 2) Page 99 © Dr. Mark Llewellyn

• How do you know whether to convert a relationship into an
associative entity type?

• There are four conditions that should exist:

1. All of the relationships for the participating entity types are
“many” relationships.

2. The resulting associative entity type has independent meaning to
end users, and preferably can be identified with a single-attribute
identifier.

3. The associative entity has one or more attributes, in addition to the
identifier.

4. The associative entity participates in one or more relationships
independent of the entities related in the associated relationship.

Associative Entities (cont.)

COP 4710: Data Modeling (Chapter 2) Page 100 © Dr. Mark Llewellyn

• It is not always clear whether an object is best

expressed by an entity set or a relationship set.

• Consider the banking example. We have been

modeling a loan as an entity. An alternative is to

model a loan as a relationship between customers

and say branches of the bank, with loan-number and

amount as descriptive attributes. Each loan is then

represented as a relationship between a customer

and a branch.

Entity Sets vs. Relationship Sets

COP 4710: Data Modeling (Chapter 2) Page 101 © Dr. Mark Llewellyn

• If every loan is owned by exactly one customer and is
associated with exactly one branch, then it may be
satisfactory to model the loan as a relationship.

• However, with this design we cannot represent in a
convenient way the situation in which several customers
jointly own a single loan.

– To handle this type of situation, we would need to define a separate
relationship for each holder of the joint loan.

– Then we would replicate all of the values for the descriptive attributes
loan-number and amount in each such relationship. Each such
relationship must, of course, have the same value for the descriptive
attributes.

Entity Sets vs. Relationship Sets (cont.)

COP 4710: Data Modeling (Chapter 2) Page 102 © Dr. Mark Llewellyn

• Two problems arise as a result of the replication:

1. The data are stored in multiple locations (the very meaning of
replication).

2. Updates potentially leave the data in an inconsistent state, where the
values in two different sets differ when they should be identical.
We’ll look at the complications that this replication causes as well as
solution techniques (normalization theory) later in the course. Notice
that the problem of replication is absent in our original version
because loan is represented by an entity set in that case.

• One possible guideline in determining whether to use an
entity set or a relationship set is to designate a relationship
set to describe an action that occurs between entities. This
approach can also be useful in deciding whether certain
attributes may be more appropriately expressed as
relationships.

•

Entity Sets vs. Relationship Sets (cont.)

COP 4710: Data Modeling (Chapter 2) Page 103 © Dr. Mark Llewellyn

• Some of the parts of UML are:

1. Class diagram. A class diagram is similar to an E-R
diagram. We’ll see the correspondence between them
shortly.

2. Use case diagram. Use case diagrams show the interaction
between users and the system, in particular the steps of
tasks that users perform (such as withdrawing money from
a bank account or registering for a course).

3. Activity diagram. Activity diagrams depict the flow of
tasks between various components of the system.

4. Implementation diagram. Implementation diagrams show
the system components and their interconnections, both at
the software component level and the hardware
component level.

The Unified Modeling Language (UML) (cont.)

COP 4710: Data Modeling (Chapter 2) Page 104 © Dr. Mark Llewellyn

Correspondence of Old-style ERDs & UML Class

Diagrams

Entity sets and attributes

customer

customer-name

customer-id

customer-street

customer-city

E-R Diagram UML Class Diagram

customer name

customer-id

customer-name

customer-street

customer-city

COP 4710: Data Modeling (Chapter 2) Page 105 © Dr. Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Relationships

E-R Diagrams UML Class Diagrams

E1 E2R
role1 role2

E1 E2
role1 role2R

E1 E2R
role1 role2

att1 att2

E1 E2
role1 role2

R

att1

att2

COP 4710: Data Modeling (Chapter 2) Page 106 © Dr. Mark Llewellyn

Correspondence of E-R & UML Diagrams (cont.)

Cardinality Constraints

E-R Diagrams UML Diagrams

E1 E2R
0..* 0..1

E1 E2
0..1 0..*R

NOTE: Positioning of cardinality constraints

is exactly opposite in the two models. In the

UML model the constraint 0..1 on the left side

means that an E2 entity can participate in at

most 1 relationship, whereas each E1 entity

can participate in many relationships; in other

words, the relationship is many to one from E2

to E1

COP 4710: Data Modeling (Chapter 2) Page 107 © Dr. Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
overlapping generalization

employeecustomer

person

COP 4710: Data Modeling (Chapter 2) Page 108 © Dr. Mark Llewellyn

disjoint

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
disjoint generalization

employeecustomer

person

COP 4710: Data Modeling (Chapter 2) Page 109 © Dr. Mark Llewellyn

• Referential integrity constraints can be as simple as

asserting that a given attribute have a non-null, single

value. However, referential integrity constraints most

commonly refer to the relationships among entity sets.

• Let’s again consider our banking example and the

one-to-many relationship between customer and

account as shown below:

Referential Integrity Constraints

Customer Account

access date

COP 4710: Data Modeling (Chapter 2) Page 110 © Dr. Mark Llewellyn

• The one-to-many relationship depositor simply says that no
account can be deposited into by more than one customer (and
also that a customer can deposit into many different accounts).

• More importantly, it does not say that an account must be
deposited into by a customer, nor does it say that a customer
must make a deposit into an account. Further, it does not say
that if an account is deposited into by a customer that the
customer be present in the database!

• A referential integrity constraint requires that each entity
“referenced” by the relationship must exist in the database.

• There are several methods which can be used to enforce
referential integrity constraints:

Referential Integrity Constraints (cont.)

COP 4710: Data Modeling (Chapter 2) Page 111 © Dr. Mark Llewellyn

1. Deletion of a referenced entity is not allowed. In other words, if
Kristi makes a deposit into account number 456, then
subsequently we cannot delete either the information concerning
either Kristi or account 456.

2. If a referenced entity is deleted, then all entries that reference the
deleted entity also be deleted. In other words, if we delete the
information on Kristi, then we must delete all account
information for accounts that she (alone) has deposited into.
Notice in the specific example we are considering, that the
relationship is M:1 which means that if Kristi has deposited into
an account, she will be the only customer to do so. This will not
be the case for a M:M relationship however.

• Referential integrity constraints can be modeled in ERDs
although the notation varies widely from tool to tool. We’ll
hold off on this until we see SQL later on.

Referential Integrity Constraints (cont.)

